58win - Nổ Hũ CQ9

  Trang chủ   Giới thiệu   Tin tức   Dịch vụ   Giải pháp   Tuyển dụng  
Sản phẩm
 
Dịch vụ
 
  Hướng dẫn mua, sử dụng máy bơm công nghiệp, bơm cứu hỏa, bơm xăng dầu
  Hướng dẫn lựa chọn hệ thống định lượng xăng dầu, cần xuất dầu
  Tư vấn lựa chọn, sử dụng đồng hồ đo lưu lượng, lưu lượng kế đo nước, đo xăng dầu và đo chất lỏng
  Hướng dẫn lựa chọn Barrier tự động, bãi đỗ xe tự động
  Tư vấn, thiết kế hệ thống chữa cháy, hệ thống báo cháy tựu động, hệ thống sprinkler tự động TCVN
  Bí quyết thông thạo các điều kiện Incoterm 2010 trong thương mại quốc tế
 
Thống kê
 
Khách trực tuyến: 23
Lượt truy cập: 2047
 
Partner

Mua ong thep ma kem o dau tai ha noi | San pham mua ong thep ma kem o dau tai ha noi
Kết quả tìm kiếm
Kết quả tìm kiếm được 424 kết quả theo từ khóa "Mua ong thep ma kem o dau tai ha noi"
// Fix for image handling
 
  Silo and Discharge Dosing Screw pump
 

Function and Principle of Operation

 

// Fix for image handling
 
   Flow sensor, Flow indicator, flow transmitter, Flow switch
 

Flow switch, Flow transmitter :
Iva Vietnam co.,ltd as the distributor in Vietnam offers the best thermal dispersion liquid and gas flow switch solutions for your low-flow

 
// Fix for image handling
 
  Ultrasonic Flow meter - Open channel flow meter
 

Open channel flow meters:
 How Open Channel Flowmeters Work
 Open channel flowmeters measure the flow of liquids that are open to the atmosphere at some point

 
// Fix for image handling
 
   API 676, Api 675 positive displacement reciprocating pump : Gear pump, Internal gear pump, external gear pump
 

 We, Iva Vietnam Co.,ltd as the leading distributor to supply wide range of gear pumps as internal gear pump, external gear pump, duplex gear pump for many applications in lubricating,

 
// Fix for image handling
 
  Thiết bị báo mức, thiết bị kiểm soát mực chất lỏng, thiết bị đo mức, thiết bị báo tràn dầu, sensor đo mức dầu,
 

Iva Vietnam chuyên cung cấp các loại Thiết bị báo mức, sensor báo mức

 
// Fix for image handling
 
  Class 1 For metering refined petroleum products such as leaded and unleaded gasoline, fuels oils, diesel fuel, kerosene, ethylene glycol (antifreeze) and propylene glycol at rated capacity.  Also used on motor oils and rotogravure ink at reduced rates of flow.
Class 2 For metering aviation gasolines and jet fuels when meter is installed downstream of the filter/separator.  Non-ferrous construction...meters may be operated at rated capacity.
Class 3 For metering a wide variety of products such as: liquid sugars, corn syrup, corn sweeteners, dextrose, fructose, sucrose, maltose, lactose, corn oil, soy bean oil, cotton seed oil, coconut oil, and shortening's etc.  Rate of flow is based on viscosity to pressure loss relationship.
Class 4 For metering treated waters (deionized, demineralized, and potable) and certain solvents where no red metals are allowed.  Meters may be operated at rated capacity, except for continuous duty service.  Note: Substitute for former class 6 and 17 applications.  Anodized aluminum and stainless steel construction.
Class 7 For metering chlorinated solvents such as: perchloroethylene, trichloroethylene, trichloroethane, and methylene chloride.  Also used for general solvent service.  Meters may be operated at rated capacity, except for continuous duty service.  All ferrous construction.
Class 8 For metering acid pH liquids such as: nitric, phosphoric and glacial acetic acids, amines citric (fruit juices) and vinegars.  All 316 stainless steel construction.  Operation at up to 80% of maximum rated capacity is recommended.
Class 10 For metering liquified petroleum gas (LPG) including butane, isobutane, pentane, ethane, freons and propane.  Note: materials of construction (including seals) are UL approved for propane, modifications to materials of construction may be required for other liquids listed, including commercial grade NH3.
Class 14 For metering crude oil (LACT and NOD). Also for heated and/or viscous liquids including animal fats, resins, #6 oil and non-abrasive asphalt emulsions.  Rate of flow based on viscosity to pressure loss relationship.  Note: Substitute for former class 5 applications.
Class 15 For metering oil or water based latex products, polyester resins, and adhesives (neutral pH).  Also available for metering herbicides and nitrogen fertilizer solutions (requires viton and teflon seals).  Operation at 80% of rated capacity or less is recommended.  Shear sensitive liquids must be operated at 1/3 of rated capacity or less.
Class 16 For general solvent metering service such as: methanol, toluene, xylene, naphtha, acetone, MEK, MIBK, and alcohols including ethanol.  Class meters should be used if the application involves the use of chlorinated solvents.  Meters may be operated at rated capacity except for continuous duty service.
Class 20 For batch process water meter service.  Not intended for use with deionized water or demineralized water.  May be used for solvents and other liquids compatible with brass.  Meters may be operated at rated capacity.  Not intended for continuous duty service.  All brass construction with 300 series stainless steel trim.
Class 27 For metering alkaline pH latex products and adhesives, and some clear liquid fertilizers (10-34-0).  Operation at lower than rated capacity is recommended.  Shear sensitive liquids must be operated at 1/3 of rated capacity or less.  All ferrous construction.
Class 30 For metring herbicides such as Aatrex, Atrazine, Bicep, Bladex, Dual, Lasso, Lasso ME, Treflan, Sutan, Sutazine, and Eradicine (required teflon seals).  Operation at up to 80% of maximum rated capacity is recommended.  Available in M-5 meter only.  Use class 15 in all other meter sizes.
Class 37 For metering sodium hydroxide (caustic) solutions, high sulfur crude oil (LACT and NOD) and other alkaline pH liquids including nonabrasive asphalt emulsions and liquid feed (molasses) supplement and some resins.  Construction suitable for heated and/or viscous liquid.  Rate of flow based on viscosity to pressure loss relationship.  All ferous construciton.
Class 47 For metering mildly abrasive liquids, all ferrous construction.

 

</span></div>]" class="text_product"> Oval gear meter, Ultrasonic flow meter, Positive displacement meter, turbine meter, rotary meter, mass flow coriolis meter,..:Fuel flow meters, Crude oil meter

 

Oval gear meter, Mass flow coriolis flow meter, Turbine flow meter, Positive displacement rotary flow meter are common meters. But Vortex flow meters utilize ultrasonic technology

 
// Fix for image handling
 
   Bộ trao đổi nhiệt : Chiller, Boiler Heat exchanger
 

 Tập đoàn Quốc Tế Vũ Anh cung cấp các loại bộ trao đổi nhiệt heat exchanger dạng tấm, dạng ống, dạng điều khiển điện, ..

 
// Fix for image handling
 
  Thiết bị nồi hơi, nồi hơi
 

 Iva Vietnam nhập khẩu và phân phối các loại hệ thống nồi hơi, lò hơi dùng trong khách sạn, công nghiệp , xăng dầu, lò đốt,...

 
// Fix for image handling
 
  Van cửa cống, van cửa phai : Penstock, Sluice gate valve, knife gate valve, square gate valve
 

Van cửa cống, van cửa phai : Penstock, Sluice gate valve, Knife gate valve, Square gate valve, slide gate valve,..

 
// Fix for image handling
 
  Đai treo ống, đai giữ ống : Pipe coupling, Pipe clamp, Pipe hanger
 

 Iva Vietnam nhập khẩu và phân phối các loại đai treo ống và đai giữ ống, cùm treo ống các loại chuyên dụng (pipe clamp, pipe coupling, pipe grooved coupling,

 
// Fix for image handling
 
  Trụ chỉ thị vị trí đóng mở van chữa cháy : loại gắn tường và loại cho van chôn ngầm đất : ( PIV ) post indicator
 

Trụ chỉ thị vị trí đóng mở van chữa cháy: loại gắn tường và loại cho van chôn ngầm đất : gate valve post indicator 

 
// Fix for image handling
 
  Van xả và kiểm tra có mắt quan sát : Test and drain valve with sight glass
 

Van xả và kiểm tra có mắt quan sát : Test and drain valve with sight glass, fire sprinkler inspector test valve,..

 
// Fix for image handling
 
  Nắp chụp đầu phun sprinkler, đế chụp đầu phun : Sprinkler head Escutcheon, Sprinkler cover plate
 

 Nắp chụp đầu phun sprinkler : Viking Sprinkler head Escutcheon, Tyco sprinkler cover plate, nắp che đầu phun chữa cháy, nắp chụp đầu phun sprinkler, đế chụp đầu phun chữa

 
// Fix for image handling
 
  Van cổng tín hiệu điện, van bướm tín hiệu điện : OS & Y gate valve, UL_FM_signal gate vale, Butterfly valve with supervisory switch
 

Van cổng tín hiệu điện, van bướm tín hiệu điện, van 1 chiều tiêu chuẩn UL listed, FM approved: OS & Y gate valve, UL_FM_signal gate vale, Butterfly valve with

 
// Fix for image handling
 
   OY & Y gate valve with supervisory switch, UL-FM signal gate valve, Signal butterfly valve with supervisory switch
 

 OY & Y gate valve with supervisory switch, UL-FM signal gate valve, Signal butterfly valve with supervisory switch

 
// Fix for image handling
 
  Post indicator valve
 

 Post indicator valve (PIV): A type of valve used for underground piping, having a lockable actuator atop a post with a

 
// Fix for image handling
 
  A boiler is a closed vessel in which water or other fluid is heated. The heated or vaporized fluid exits the boiler for use in various processes or heating applications.

OVERVIEW:
- Materials: The pressure vessel in a boiler is usually made of steel (or alloy steel), or historically of wrought iron. Stainless steel is virtually prohibited (by the ASME Boiler Code) for use in wetted parts of modern boilers, but is used often in superheater sections that will not be exposed to liquid boiler water. In live steam models, copper or brass is often used because it is more easily fabricated in smaller size boilers. Historically, copper was often used for fireboxes (particularly for steam locomotives), because of its better formability and higher thermal conductivity; however, in more recent times, the high price of copper often makes this an uneconomic choice and cheaper substitutes (such as steel) are used instead.

For much of the Victorian "age of steam", the only material used for boilermaking was the highest grade of wrought iron, with assembly by rivetting. This iron was often obtained from specialist ironworks, such as at Cleator Moor (UK), noted for the high quality of their rolled plate and its suitability for high-reliability use in critical applications, such as high-pressure boilers. In the 20th century, design practice instead moved towards the use of steel, which is stronger and cheaper, with welded construction, which is quicker and requires less labour.
Cast iron may be used for the heating vessel of domestic water heaters. Although such heaters are usually termed "boilers" in some countries, their purpose is usually to produce hot water, not steam, and so they run at low pressure and try to avoid actual boiling. The brittleness of cast iron makes it impractical for high pressure steam boilers.

- Fuel:
The source of heat for a boiler is combustion of any of several fuels, such as wood, coal, oil, or natural gas. Electric steam boilers use resistance- or immersion-type heating elements. Nuclear fission is also used as a heat source for generating steam. Heat recovery steam generators (HRSGs) use the heat rejected from other processes such as gas turbines.

- Configurations
: Boilers can be classified into the following configurations:

* "Pot boiler" or "Haycock boiler": a primitive "kettle" where a fire heats a partially-filled water container from below. 18th century Haycock boilers generally produced and stored large volumes of very low-pressure steam, often hardly above that of the atmosphere. These could burn wood or most often, coal. Efficiency was very low.

* Fire-tube boiler. Here, water partially fills a boiler barrel with a small volume left above to accommodate the steam (steam space). This is the type of boiler used in nearly all steam locomotives. The heat source is inside a furnace or firebox that has to be kept permanently surrounded by the water in order to maintain the temperature of the heating surface just below boiling point. The furnace can be situated at one end of a fire-tube which lengthens the path of the hot gases, thus augmenting the heating surface which can be further increased by making the gases reverse direction through a second parallel tube or a bundle of multiple tubes (two-pass or return flue boiler); alternatively the gases may be taken along the sides and then beneath the boiler through flues (3-pass boiler). In the case of a locomotive-type boiler, a boiler barrel extends from the firebox and the hot gases pass through a bundle of fire tubes inside the barrel which greatly increase the heating surface compared to a single tube and further improve heat transfer. Fire-tube boilers usually have a comparatively low rate of steam production, but high steam storage capacity. Fire-tube boilers mostly burn solid fuels, but are readily adaptable to those of the liquid or gas variety.

* Water-tube boiler: 
In this type,the water tubes are arranged inside a furnace in a number of possible configurations: often the water tubes connect large drums, the lower ones containing water and the upper ones, steam and water; in other cases, such as a monotube boiler, water is circulated by a pump through a succession of coils. This type generally gives high steam production rates, but less storage capacity than the above. Water tube boilers can be designed to exploit any heat source and are generally preferred in high pressure applications since the high pressure water/steam is contained within small diameter pipes which can withstand the pressure with a thinner wall.

* Flash boiler : A specialized type of water-tube boiler.
Fire-tube boiler with Water-tube firebox. Sometimes the two above types have been combined in the following manner: the firebox contains an assembly of water tubes, called thermic siphons. The gases then pass through a conventional firetube boiler. Water-tube fireboxes were installed in many Hungarian locomotives, but have met with little success in other countries.

* Sectional boiler:
 In a cast iron sectional boiler, sometimes called a "pork chop boiler" the water is contained inside cast iron sections. These sections are assembled on site to create the finished boiler.

- Safety:
Historically, boilers were a source of many serious injuries and property destruction due to poorly understood engineering principles. Thin and brittle metal shells can rupture, while poorly welded or riveted seams could open up, leading to a violent eruption of the pressurized steam. When water is converted to steam it expands in volume over 1,000 times and travels a down a steam pipes at over 100 kilometres/hr. Because of this steam is a great way of moving energy and heat around a site from a central boiler house to where it is needed, but without the right boiler feed water treatment, a steam-raising plant will suffer from scale formation and corrosion. At best, this increases energy costs and can lead to poor quality steam, reduced efficiency, shorter plant life and an operation which is unreliable. At worst, it can lead to catastrophic failure and loss of life. Collapsed or dislodged boiler tubes could also spray scalding-hot steam and smoke out of the air intake and firing chute, injuring the firemen who loaded coal into the fire chamber. Extremely large boilers providing hundreds of horsepower to operate factories could demolish entire buildings.

A boiler that has a loss of feed water and is permitted to boil dry can be extremely dangerous. If feed water is then sent into the empty boiler, the small cascade of incoming water instantly boils on contact with the superheated metal shell and leads to a violent explosion that cannot be controlled even by safety steam valves. Draining of the boiler could also occur if a leak occurred in the steam supply lines that was larger than the make-up water supply could replace. The Hartford Loop was invented in 1919 by the Hartford Steam Boiler and Insurance Company as a method to help prevent this condition from occurring, and thereby reduce their insurance claims.

- Superheated steam boilers:
A superheated boiler on a steam locomotive.
Most boilers produce steam to be used at saturation temperature; that is, saturated steam. Superheated steam boilers vaporize the water and then further heat the steam in a superheater. This provides steam at much higher temperature, but can decrease the overall thermal efficiency of the steam generating plant because the higher steam temperature requires a higher flue gas exhaust temperature. There are several ways to circumvent this problem, typically by providing an economizer that heats the feed water, a combustion air heater in the hot flue gas exhaust path, or both. 

There are advantages to superheated steam that may, and often will, increase overall efficiency of both steam generation and its utilisation: gains in input temperature to a turbine should outweigh any cost in additional boiler complication and expense. There may also be practical limitations in using wet steam, as entrained condensation droplets will damage turbine blades.

Superheated steam presents unique safety concerns because, if any system component fails and allows steam to escape, the high pressure and temperature can cause serious, instantaneous harm to anyone in its path. Since the escaping steam will initially be completely superheated vapor, detection can be difficult, although the intense heat and sound from such a leak clearly indicates its presence.

Superheater operation is similar to that of the coils on an air conditioning unit, although for a different purpose. The steam piping is directed through the flue gas path in the boiler furnace. The temperature in this area is typically between 1300–1600 degrees Celsius (2372–2912 °F). Some superheaters are radiant type; that is, they absorb heat by radiation. Others are convection type, absorbing heat from a fluid. Some are a combination of the two types. 

Through either method, the extreme heat in the flue gas path will also heat the superheater steam piping and the steam within. While the temperature of the steam in the superheater rises, the pressure of the steam does not: the turbine or moving pistons offer a continuously expanding space and the pressure remains the same as that of the boiler. Almost all steam superheater system designs remove droplets entrained in the steam to prevent damage to the turbine blading and associated piping.

- Supercritical steam generator:
Supercritical steam generators are frequently used for the production of electric power. They operate at supercritical pressure. In contrast to a "subcritical boiler", a supercritical steam generator operates at such a high pressure (over 3,200 psi/22.06 MPa or 3,200 psi/220.6 bar) that actual boiling ceases to occur, the boiler has no liquid water - steam separation. There is no generation of steam bubbles within the water, because the pressure is above the critical pressure at which steam bubbles can form. It passes below the critical point as it does work in a high pressure turbine and enters the generator's condenser. This results in slightly less fuel use and therefore less greenhouse gas production. The term "boiler" should not be used for a supercritical pressure steam generator, as no "boiling" actually occurs in this device.

- Hydronic boilers:
Hydronic boilers are used in generating heat for residential and industrial purposes. They are the typical power plant for central heating systems fitted to houses in northern Europe (where they are commonly combined with domestic water heating), as opposed to the forced-air furnaces or wood burning stoves more common in North America. The hydronic boiler operates by way of heating water/fluid to a preset temperature (or sometimes in the case of single pipe systems, until it boils and turns to steam) and circulating that fluid throughout the home typically by way of radiators, baseboard heaters or through the floors. The fluid can be heated by any means...gas, wood, fuel oil, etc., but in built-up areas where piped gas is available, natural gas is currently the most economical and therefore the usual choice. The fluid is in an enclosed system and circulated throughout by means of a motorized pump. The name "boiler" can be a misnomer in that, except for systems using steam radiators, the water in a properly functioning hydronic boiler never actually boils. Some new systems are fitted with condensing boilers for greater efficiency. These boilers are referred to as condensing boilers because the boilers are designed to operate at lower temperatures than typical hydronic boilers. These lower temperatures would typically damage a boiler because it would cause condensation in the flue gases which ultimately form carbonic acid which corrodes the flue and fireside boiler heating surfaces. Condensing boilers solve this problem by routing the carbonic acid down the drain and by making the flue out of stainless steel or PVC. Although condensing boilers are becoming more popular, they are still less common than other types of hydronic boilers because they are more expensive.

Hydronic systems are being used more and more in new construction in North America for several reasons. Among the reasons are:
- They are more efficient and more economical than forced-air systems (although initial installation can be more expensive, because of the cost of the copper and aluminum).

- The baseboard copper pipes and aluminum fins take up less room and use less metal than the bulky steel ductwork required for forced-air systems.

 - They provide more even, less fluctuating temperatures than forced-air systems. The copper baseboard pipes hold and release heat over a longer period of time than air does, so the furnace does not have to switch off and on as much. (Copper heats mostly through conduction and radiation, whereas forced-air heats mostly through forced convection. Air has much lower thermal conductivity and volumetric heat capacity than copper, so the conditioned space warms up and cools down more quickly than with hydronic. See also thermal mass.)
- They tend to not dry out the interior air as much as forced air systems, but this is not always true. When forced air duct systems are air-sealed properly, and have return-air paths back to the furnace (thus reducing pressure differentials and therefore air movement between inside and outside the house), this is not an issue.

 - They do not introduce any dust, allergens, mold, or (in the case of a faulty heat exchanger) combustion byproducts into the living space.

 - Forced-air heating does have some advantages, however. See forced-air heating.

- Boiler fittings and accessories:
+ Safety valve: It is used to relieve pressure and prevent possible explosion of a boiler.
+ Water level indicators: They show the operator the level of fluid in the boiler, also known as a sight glass, water gauge or water column is provided.
+ Bottom blowdown valves: They provide a means for removing solid particulates that condense and lie on the bottom of a boiler. As the name implies, this valve is usually located directly on the bottom of the boiler, and is occasionally opened to use the pressure in the boiler to push these particulates out.
+ Continuous blowdown valve: This allows a small quantity of water to escape continuously. Its purpose is to prevent the water in the boiler becoming saturated with dissolved salts. Saturation would lead to foaming and cause water droplets to be carried over with the steam - a condition known as priming. Blowdown is also often used to monitor the chemistry of the boiler water.
+ Flash Tank: High pressure blowdown enters this vessel where the steam can 'flash' safely and be used in a low-pressure system or be vented to atmosphere while the ambient pressure blowdown flows to drain.
+ Automatic Blowdown/Continuous Heat Recovery System: This system allows the boiler to blowdown only when makeup water is flowing to the boiler, thereby transferring the maximum amount of heat possible from the blowdown to the makeup water. No flash tank is generally needed as the blowdown discharged is close to the temperature of the makeup water.
+ Hand holes: They are steel plates installed in openings in "header" to allow for inspections & installation of tubes and inspection of internal surfaces.
+ Steam drum internals, A series of screen, scrubber & cans (cyclone separators).
+ Low- water cutoff : It is a mechanical means (usually a float switch) that is used to turn off the burner or shut off fuel to the boiler to prevent it from running once the water goes below a certain point. If a boiler is "dry-fired" (burned without water in it) it can cause rupture or catastrophic failure.
+ Surface blowdown line: It provides a means for removing foam or other lightweight non-condensible substances that tend to float on top of the water inside the boiler.
+ Circulating pump: It is designed to circulate water back to the boiler after it has expelled some of its heat.
+ Feedwater check valve or clack valve: A non-return stop valve in the feedwater line. This may be fitted to the side of the boiler, just below the water level, or to the top of the boiler.
+ Top feed: A check valve (clack valve) in the feedwater line, mounted on top of the boiler. It is intended to reduce the nuisance of limescale. It does not prevent limescale formation but causes the limescale to be precipitated in a powdery form which is easily washed out of the boiler.
+ Desuperheater tubes or bundles: A series of tubes or bundles of tubes in the water drum or the steam drum designed to cool superheated steam. Thus is to supply auxiliary equipment that does not need, or may be damaged by, dry steam.
+ Chemical injection line: A connection to add chemicals for controlling feedwater pH.

- Steam accessories
+ Main steam stop valve:
+ Steam traps:
+ Main steam stop/Check valve: It is used on multiple boiler installations.

- Combustion accessories
+ Fuel oil system:
+ Gas system:
+ Coal system:
+ Soot blower

- Other essential items:
+ Pressure gauges:
+Feed pumps:
+ Fusible plug:
+ Inspectors test pressure gauge attachment:
+ Name plate:
+ Registration plate:

- Controlling draught
Most boilers now depend on mechanical draught equipment rather than natural draught. This is because natural draught is subject to outside air conditions and temperature of flue gases leaving the furnace, as well as the chimney height. All these factors make proper draught hard to attain and therefore make mechanical draught equipment much more economical.
There are three types of mechanical draught:
+ Induced draught: This is obtained one of three ways, the first being the "stack effect" of a heated chimney, in which the flue gas is less dense than the ambient air surrounding the boiler. The denser column of ambient air forces combustion air into and through the boiler. The second method is through use of a steam jet. The steam jet oriented in the direction of flue gas flow induces flue gasses into the stack and allows for a greater flue gas velocity increasing the overall draught in the furnace.

 This method was common on steam driven locomotives which could not have tall chimneys. The third method is by simply using an induced draught fan (ID fan) which removes flue gases from the furnace and forces the exhaust gas up the stack. Almost all induced draught furnaces operate with a slightly negative pressure.
+ Forced draught: Draught is obtained by forcing air into the furnace by means of a fan (FD fan) and ductwork. Air is often passed through an air heater; which, as the name suggests, heats the air going into the furnace in order to increase the overall efficiency of the boiler. Dampers are used to control the quantity of air admitted to the furnace. Forced draught furnaces usually have a positive pressure.
+ Balanced draught: Balanced draught is obtained through use of both induced and forced draught. This is more common with larger boilers where the flue gases have to travel a long distance through many boiler passes. The induced draught fan works in conjunction with the forced draught fan allowing the furnace pressure to be maintained slightly below atmospheric.
</span></div>]" class="text_product"> Heat exchanger for boiler systems

 

 Heat exchanger for boiler, heavy fuel oil system, heat water systems,..

 
// Fix for image handling
 
   Buffer tank, chiller tower, boiler tank
 

 Buffer tank, chiller tower, boiler tank

 
Trang (7/24): 4  5  6  7  8  9  10 ... « Trang đầu  |  Trang cuối » 
Hỗ trợ KH
Hotline: 0989.886.889
Bán hàng Online (Mr Tuân)
Bán hàng Online (Ms Xuân)
Bán hàng Online (Mr Tú)
Bán hàng Online (Ms Thủy)
Bán hàng Online (Mr Huy)
Chăm sóc khách hàng (After Sales)
Admin: tu.hm@vietnam-pump.com
 
 
Tin tức
 
Tiện ích
 
   Giá vàng
   Thời tiết
   Tỷ giá ngoại tệ
   Chứng khoán
 
Partner

Trang chủ | Liên hệ | Đầu trang
 

CÔNG TY TNHH QUỐC TẾ VŨ ANH VIỆT NAM
IVA VINA  CO.,LTD.

(Tên cũ : IVA VIETNAM CO.,LTD)
Trụ sở: Số 31 Ngõ 2, Xóm Đoàn Kết, Thôn Văn điển, Xã Tứ Hiệp, Huyện Thanh Trì, TP. Hà Nội, VN.
VP Đại diện: Số 47 Đường Ngọc Hồi , Phường Hoàng Liệt, Quận Hoàng Mai, Hà Nội, Vietnam
Điện thoại: 024-6288.3882; 6288.3289    Fax: 024-6288.3286    Hotline: 0989.886.889
Website: www.buy-asthma-inhalers-online.com . Copyright © 2005-2010 iva-vietnam. All Rights Reserved – Contact us
*Iva Vietnam, Vietnam pump, Vina pumps* Công ty TNHH Tập đoàn Quốc tế Vũ Anh giữ bản quyền nội dung trên website này.