58win - Nổ Hũ CQ9

  Trang chủ   Giới thiệu   Tin tức   Dịch vụ   Giải pháp   Tuyển dụng  
Sản phẩm
 
Dịch vụ
 
  Hướng dẫn mua, sử dụng máy bơm công nghiệp, bơm cứu hỏa, bơm xăng dầu
  Hướng dẫn lựa chọn hệ thống định lượng xăng dầu, cần xuất dầu
  Tư vấn lựa chọn, sử dụng đồng hồ đo lưu lượng, lưu lượng kế đo nước, đo xăng dầu và đo chất lỏng
  Hướng dẫn lựa chọn Barrier tự động, bãi đỗ xe tự động
  Tư vấn, thiết kế hệ thống chữa cháy, hệ thống báo cháy tựu động, hệ thống sprinkler tự động TCVN
  Bí quyết thông thạo các điều kiện Incoterm 2010 trong thương mại quốc tế
 
Thống kê
 
Khách trực tuyến: 45
Lượt truy cập: 12268
 
Partner

May bom nuoc diesel hyundai | San pham may bom nuoc diesel hyundai
Kết quả tìm kiếm
Kết quả tìm kiếm được 452 kết quả theo từ khóa "May bom nuoc diesel hyundai"
// Fix for image handling
 
  Trụ chỉ thị vị trí đóng mở van chữa cháy : loại gắn tường và loại cho van chôn ngầm đất : ( PIV ) post indicator
 

Trụ chỉ thị vị trí đóng mở van chữa cháy: loại gắn tường và loại cho van chôn ngầm đất : gate valve post indicator 

 
// Fix for image handling
 
  Van xả và kiểm tra có mắt quan sát : Test and drain valve with sight glass
 

Van xả và kiểm tra có mắt quan sát : Test and drain valve with sight glass, fire sprinkler inspector test valve,..

 
// Fix for image handling
 
  Nắp chụp đầu phun sprinkler, đế chụp đầu phun : Sprinkler head Escutcheon, Sprinkler cover plate
 

 Nắp chụp đầu phun sprinkler : Viking Sprinkler head Escutcheon, Tyco sprinkler cover plate, nắp che đầu phun chữa cháy, nắp chụp đầu phun sprinkler, đế chụp đầu phun chữa

 
// Fix for image handling
 
  Van cổng tín hiệu điện, van bướm tín hiệu điện : OS & Y gate valve, UL_FM_signal gate vale, Butterfly valve with supervisory switch
 

Van cổng tín hiệu điện, van bướm tín hiệu điện, van 1 chiều tiêu chuẩn UL listed, FM approved: OS & Y gate valve, UL_FM_signal gate vale, Butterfly valve with

 
// Fix for image handling
 
   OY & Y gate valve with supervisory switch, UL-FM signal gate valve, Signal butterfly valve with supervisory switch
 

 OY & Y gate valve with supervisory switch, UL-FM signal gate valve, Signal butterfly valve with supervisory switch

 
// Fix for image handling
 
  Post indicator valve
 

 Post indicator valve (PIV): A type of valve used for underground piping, having a lockable actuator atop a post with a

 
// Fix for image handling
 
  A boiler is a closed vessel in which water or other fluid is heated. The heated or vaporized fluid exits the boiler for use in various processes or heating applications.

OVERVIEW:
- Materials: The pressure vessel in a boiler is usually made of steel (or alloy steel), or historically of wrought iron. Stainless steel is virtually prohibited (by the ASME Boiler Code) for use in wetted parts of modern boilers, but is used often in superheater sections that will not be exposed to liquid boiler water. In live steam models, copper or brass is often used because it is more easily fabricated in smaller size boilers. Historically, copper was often used for fireboxes (particularly for steam locomotives), because of its better formability and higher thermal conductivity; however, in more recent times, the high price of copper often makes this an uneconomic choice and cheaper substitutes (such as steel) are used instead.

For much of the Victorian "age of steam", the only material used for boilermaking was the highest grade of wrought iron, with assembly by rivetting. This iron was often obtained from specialist ironworks, such as at Cleator Moor (UK), noted for the high quality of their rolled plate and its suitability for high-reliability use in critical applications, such as high-pressure boilers. In the 20th century, design practice instead moved towards the use of steel, which is stronger and cheaper, with welded construction, which is quicker and requires less labour.
Cast iron may be used for the heating vessel of domestic water heaters. Although such heaters are usually termed "boilers" in some countries, their purpose is usually to produce hot water, not steam, and so they run at low pressure and try to avoid actual boiling. The brittleness of cast iron makes it impractical for high pressure steam boilers.

- Fuel:
The source of heat for a boiler is combustion of any of several fuels, such as wood, coal, oil, or natural gas. Electric steam boilers use resistance- or immersion-type heating elements. Nuclear fission is also used as a heat source for generating steam. Heat recovery steam generators (HRSGs) use the heat rejected from other processes such as gas turbines.

- Configurations
: Boilers can be classified into the following configurations:

* "Pot boiler" or "Haycock boiler": a primitive "kettle" where a fire heats a partially-filled water container from below. 18th century Haycock boilers generally produced and stored large volumes of very low-pressure steam, often hardly above that of the atmosphere. These could burn wood or most often, coal. Efficiency was very low.

* Fire-tube boiler. Here, water partially fills a boiler barrel with a small volume left above to accommodate the steam (steam space). This is the type of boiler used in nearly all steam locomotives. The heat source is inside a furnace or firebox that has to be kept permanently surrounded by the water in order to maintain the temperature of the heating surface just below boiling point. The furnace can be situated at one end of a fire-tube which lengthens the path of the hot gases, thus augmenting the heating surface which can be further increased by making the gases reverse direction through a second parallel tube or a bundle of multiple tubes (two-pass or return flue boiler); alternatively the gases may be taken along the sides and then beneath the boiler through flues (3-pass boiler). In the case of a locomotive-type boiler, a boiler barrel extends from the firebox and the hot gases pass through a bundle of fire tubes inside the barrel which greatly increase the heating surface compared to a single tube and further improve heat transfer. Fire-tube boilers usually have a comparatively low rate of steam production, but high steam storage capacity. Fire-tube boilers mostly burn solid fuels, but are readily adaptable to those of the liquid or gas variety.

* Water-tube boiler: 
In this type,the water tubes are arranged inside a furnace in a number of possible configurations: often the water tubes connect large drums, the lower ones containing water and the upper ones, steam and water; in other cases, such as a monotube boiler, water is circulated by a pump through a succession of coils. This type generally gives high steam production rates, but less storage capacity than the above. Water tube boilers can be designed to exploit any heat source and are generally preferred in high pressure applications since the high pressure water/steam is contained within small diameter pipes which can withstand the pressure with a thinner wall.

* Flash boiler : A specialized type of water-tube boiler.
Fire-tube boiler with Water-tube firebox. Sometimes the two above types have been combined in the following manner: the firebox contains an assembly of water tubes, called thermic siphons. The gases then pass through a conventional firetube boiler. Water-tube fireboxes were installed in many Hungarian locomotives, but have met with little success in other countries.

* Sectional boiler:
 In a cast iron sectional boiler, sometimes called a "pork chop boiler" the water is contained inside cast iron sections. These sections are assembled on site to create the finished boiler.

- Safety:
Historically, boilers were a source of many serious injuries and property destruction due to poorly understood engineering principles. Thin and brittle metal shells can rupture, while poorly welded or riveted seams could open up, leading to a violent eruption of the pressurized steam. When water is converted to steam it expands in volume over 1,000 times and travels a down a steam pipes at over 100 kilometres/hr. Because of this steam is a great way of moving energy and heat around a site from a central boiler house to where it is needed, but without the right boiler feed water treatment, a steam-raising plant will suffer from scale formation and corrosion. At best, this increases energy costs and can lead to poor quality steam, reduced efficiency, shorter plant life and an operation which is unreliable. At worst, it can lead to catastrophic failure and loss of life. Collapsed or dislodged boiler tubes could also spray scalding-hot steam and smoke out of the air intake and firing chute, injuring the firemen who loaded coal into the fire chamber. Extremely large boilers providing hundreds of horsepower to operate factories could demolish entire buildings.

A boiler that has a loss of feed water and is permitted to boil dry can be extremely dangerous. If feed water is then sent into the empty boiler, the small cascade of incoming water instantly boils on contact with the superheated metal shell and leads to a violent explosion that cannot be controlled even by safety steam valves. Draining of the boiler could also occur if a leak occurred in the steam supply lines that was larger than the make-up water supply could replace. The Hartford Loop was invented in 1919 by the Hartford Steam Boiler and Insurance Company as a method to help prevent this condition from occurring, and thereby reduce their insurance claims.

- Superheated steam boilers:
A superheated boiler on a steam locomotive.
Most boilers produce steam to be used at saturation temperature; that is, saturated steam. Superheated steam boilers vaporize the water and then further heat the steam in a superheater. This provides steam at much higher temperature, but can decrease the overall thermal efficiency of the steam generating plant because the higher steam temperature requires a higher flue gas exhaust temperature. There are several ways to circumvent this problem, typically by providing an economizer that heats the feed water, a combustion air heater in the hot flue gas exhaust path, or both. 

There are advantages to superheated steam that may, and often will, increase overall efficiency of both steam generation and its utilisation: gains in input temperature to a turbine should outweigh any cost in additional boiler complication and expense. There may also be practical limitations in using wet steam, as entrained condensation droplets will damage turbine blades.

Superheated steam presents unique safety concerns because, if any system component fails and allows steam to escape, the high pressure and temperature can cause serious, instantaneous harm to anyone in its path. Since the escaping steam will initially be completely superheated vapor, detection can be difficult, although the intense heat and sound from such a leak clearly indicates its presence.

Superheater operation is similar to that of the coils on an air conditioning unit, although for a different purpose. The steam piping is directed through the flue gas path in the boiler furnace. The temperature in this area is typically between 1300–1600 degrees Celsius (2372–2912 °F). Some superheaters are radiant type; that is, they absorb heat by radiation. Others are convection type, absorbing heat from a fluid. Some are a combination of the two types. 

Through either method, the extreme heat in the flue gas path will also heat the superheater steam piping and the steam within. While the temperature of the steam in the superheater rises, the pressure of the steam does not: the turbine or moving pistons offer a continuously expanding space and the pressure remains the same as that of the boiler. Almost all steam superheater system designs remove droplets entrained in the steam to prevent damage to the turbine blading and associated piping.

- Supercritical steam generator:
Supercritical steam generators are frequently used for the production of electric power. They operate at supercritical pressure. In contrast to a "subcritical boiler", a supercritical steam generator operates at such a high pressure (over 3,200 psi/22.06 MPa or 3,200 psi/220.6 bar) that actual boiling ceases to occur, the boiler has no liquid water - steam separation. There is no generation of steam bubbles within the water, because the pressure is above the critical pressure at which steam bubbles can form. It passes below the critical point as it does work in a high pressure turbine and enters the generator's condenser. This results in slightly less fuel use and therefore less greenhouse gas production. The term "boiler" should not be used for a supercritical pressure steam generator, as no "boiling" actually occurs in this device.

- Hydronic boilers:
Hydronic boilers are used in generating heat for residential and industrial purposes. They are the typical power plant for central heating systems fitted to houses in northern Europe (where they are commonly combined with domestic water heating), as opposed to the forced-air furnaces or wood burning stoves more common in North America. The hydronic boiler operates by way of heating water/fluid to a preset temperature (or sometimes in the case of single pipe systems, until it boils and turns to steam) and circulating that fluid throughout the home typically by way of radiators, baseboard heaters or through the floors. The fluid can be heated by any means...gas, wood, fuel oil, etc., but in built-up areas where piped gas is available, natural gas is currently the most economical and therefore the usual choice. The fluid is in an enclosed system and circulated throughout by means of a motorized pump. The name "boiler" can be a misnomer in that, except for systems using steam radiators, the water in a properly functioning hydronic boiler never actually boils. Some new systems are fitted with condensing boilers for greater efficiency. These boilers are referred to as condensing boilers because the boilers are designed to operate at lower temperatures than typical hydronic boilers. These lower temperatures would typically damage a boiler because it would cause condensation in the flue gases which ultimately form carbonic acid which corrodes the flue and fireside boiler heating surfaces. Condensing boilers solve this problem by routing the carbonic acid down the drain and by making the flue out of stainless steel or PVC. Although condensing boilers are becoming more popular, they are still less common than other types of hydronic boilers because they are more expensive.

Hydronic systems are being used more and more in new construction in North America for several reasons. Among the reasons are:
- They are more efficient and more economical than forced-air systems (although initial installation can be more expensive, because of the cost of the copper and aluminum).

- The baseboard copper pipes and aluminum fins take up less room and use less metal than the bulky steel ductwork required for forced-air systems.

 - They provide more even, less fluctuating temperatures than forced-air systems. The copper baseboard pipes hold and release heat over a longer period of time than air does, so the furnace does not have to switch off and on as much. (Copper heats mostly through conduction and radiation, whereas forced-air heats mostly through forced convection. Air has much lower thermal conductivity and volumetric heat capacity than copper, so the conditioned space warms up and cools down more quickly than with hydronic. See also thermal mass.)
- They tend to not dry out the interior air as much as forced air systems, but this is not always true. When forced air duct systems are air-sealed properly, and have return-air paths back to the furnace (thus reducing pressure differentials and therefore air movement between inside and outside the house), this is not an issue.

 - They do not introduce any dust, allergens, mold, or (in the case of a faulty heat exchanger) combustion byproducts into the living space.

 - Forced-air heating does have some advantages, however. See forced-air heating.

- Boiler fittings and accessories:
+ Safety valve: It is used to relieve pressure and prevent possible explosion of a boiler.
+ Water level indicators: They show the operator the level of fluid in the boiler, also known as a sight glass, water gauge or water column is provided.
+ Bottom blowdown valves: They provide a means for removing solid particulates that condense and lie on the bottom of a boiler. As the name implies, this valve is usually located directly on the bottom of the boiler, and is occasionally opened to use the pressure in the boiler to push these particulates out.
+ Continuous blowdown valve: This allows a small quantity of water to escape continuously. Its purpose is to prevent the water in the boiler becoming saturated with dissolved salts. Saturation would lead to foaming and cause water droplets to be carried over with the steam - a condition known as priming. Blowdown is also often used to monitor the chemistry of the boiler water.
+ Flash Tank: High pressure blowdown enters this vessel where the steam can 'flash' safely and be used in a low-pressure system or be vented to atmosphere while the ambient pressure blowdown flows to drain.
+ Automatic Blowdown/Continuous Heat Recovery System: This system allows the boiler to blowdown only when makeup water is flowing to the boiler, thereby transferring the maximum amount of heat possible from the blowdown to the makeup water. No flash tank is generally needed as the blowdown discharged is close to the temperature of the makeup water.
+ Hand holes: They are steel plates installed in openings in "header" to allow for inspections & installation of tubes and inspection of internal surfaces.
+ Steam drum internals, A series of screen, scrubber & cans (cyclone separators).
+ Low- water cutoff : It is a mechanical means (usually a float switch) that is used to turn off the burner or shut off fuel to the boiler to prevent it from running once the water goes below a certain point. If a boiler is "dry-fired" (burned without water in it) it can cause rupture or catastrophic failure.
+ Surface blowdown line: It provides a means for removing foam or other lightweight non-condensible substances that tend to float on top of the water inside the boiler.
+ Circulating pump: It is designed to circulate water back to the boiler after it has expelled some of its heat.
+ Feedwater check valve or clack valve: A non-return stop valve in the feedwater line. This may be fitted to the side of the boiler, just below the water level, or to the top of the boiler.
+ Top feed: A check valve (clack valve) in the feedwater line, mounted on top of the boiler. It is intended to reduce the nuisance of limescale. It does not prevent limescale formation but causes the limescale to be precipitated in a powdery form which is easily washed out of the boiler.
+ Desuperheater tubes or bundles: A series of tubes or bundles of tubes in the water drum or the steam drum designed to cool superheated steam. Thus is to supply auxiliary equipment that does not need, or may be damaged by, dry steam.
+ Chemical injection line: A connection to add chemicals for controlling feedwater pH.

- Steam accessories
+ Main steam stop valve:
+ Steam traps:
+ Main steam stop/Check valve: It is used on multiple boiler installations.

- Combustion accessories
+ Fuel oil system:
+ Gas system:
+ Coal system:
+ Soot blower

- Other essential items:
+ Pressure gauges:
+Feed pumps:
+ Fusible plug:
+ Inspectors test pressure gauge attachment:
+ Name plate:
+ Registration plate:

- Controlling draught
Most boilers now depend on mechanical draught equipment rather than natural draught. This is because natural draught is subject to outside air conditions and temperature of flue gases leaving the furnace, as well as the chimney height. All these factors make proper draught hard to attain and therefore make mechanical draught equipment much more economical.
There are three types of mechanical draught:
+ Induced draught: This is obtained one of three ways, the first being the "stack effect" of a heated chimney, in which the flue gas is less dense than the ambient air surrounding the boiler. The denser column of ambient air forces combustion air into and through the boiler. The second method is through use of a steam jet. The steam jet oriented in the direction of flue gas flow induces flue gasses into the stack and allows for a greater flue gas velocity increasing the overall draught in the furnace.

 This method was common on steam driven locomotives which could not have tall chimneys. The third method is by simply using an induced draught fan (ID fan) which removes flue gases from the furnace and forces the exhaust gas up the stack. Almost all induced draught furnaces operate with a slightly negative pressure.
+ Forced draught: Draught is obtained by forcing air into the furnace by means of a fan (FD fan) and ductwork. Air is often passed through an air heater; which, as the name suggests, heats the air going into the furnace in order to increase the overall efficiency of the boiler. Dampers are used to control the quantity of air admitted to the furnace. Forced draught furnaces usually have a positive pressure.
+ Balanced draught: Balanced draught is obtained through use of both induced and forced draught. This is more common with larger boilers where the flue gases have to travel a long distance through many boiler passes. The induced draught fan works in conjunction with the forced draught fan allowing the furnace pressure to be maintained slightly below atmospheric.
</span></div>]" class="text_product"> Heat exchanger for boiler systems

 

 Heat exchanger for boiler, heavy fuel oil system, heat water systems,..

 
// Fix for image handling
 
   Buffer tank, chiller tower, boiler tank
 

 Buffer tank, chiller tower, boiler tank

 
// Fix for image handling
 
  Emergency fire shut-off valve, Fire safe fusible link automatic shut-off valve
 

 Fire safe fusible link automatic shut-off valve, Firematic valve, Emergency fire shut-off valve for heat system, oil or gas system,..

 
// Fix for image handling
 
   Steam trap, Bucket steam trap
 

Steam Trap is an automatic valve that allows condensate, air and other non-condensable gases to be discharged from the steam system while holding or

 
// Fix for image handling
 
  Penstock, Sluice gate valve
 

penstock is a sluice or gate or intake structure that controls water flow, or an enclosed pipe that delivers water to hydraulic turbinesand sewerage systems.

 
// Fix for image handling
 
   Flap check valve, Flap valve
 

Flap valve : Used on the discharge end of pipes

 
// Fix for image handling
 
   Water cooled chiller system, Boiler system
 

We are the top leading supplier of  Water cooled chiller systems, Boiler system,

 
// Fix for image handling
 
   Hiện nay, IVA VIETNAM cung cấp tháp giải nhiệt cho thị trường Việt nam , được úng dụng rộng rãi trong hầu hết các ngành công nghiệp như: các nhà máy luyện thép, nhà máy xi măng, khu nhà cao tầng, trường học, bệnh viện, các nhà máy thủy điện và nhiệt điện, các khu công nghiệp, khu chế xuất,..
 
Các loại tháp giải nhiệt (cooling tower) gồm có loại hình tròn, hình vuông, với công nghệ tiên tiến , chúng tôi cung cấp các loại tháp giải nhiệt không gây tiếng ồn, không gây ô nhiễm môi trường, không gây chấn động và tiết kiệm điện năng,.., những model tháp giải nhiệt phổ biến hiện nay là : BKC tower, BKK; TSC, TSS, TSH, TSN, TSB tower, Ta shin tower ; tháp giải nhiệt LBC, LRC, LDC, LFC, Liang chi, King sun tower, KST-N, KLN, KHT, KCW, KSTN tower,.. 
 
</span></div>]" class="text_product"> Tháp giải nhiệt - Cooling tower

 

 IVA VIETNAM là nhà nhập khẩu, phân phối chính hãng các loại máy bơm nước, bơm xăng dầu, bơm hóa chất, các thiết bị xử lý môi trường, máy móc

 
// Fix for image handling
 
 

• Capacitive level indicators or Capacitive level transmitters
• Ultrasound level indicators or Ultrasound level transmitters
 • Microwave level indicators or Microwave level transmitters
 
• Radar level transmitters
 
• Communicating vessels level indicators (visual or magnetic)
• Float level indicators
• Probe level indicators (immersed or floating)
• Vibrating level indicators
• Rotary level indicators
• Magnetic level switch
• Resistive level indicators
 
• Optical level indicators
• Conductivity level indicators
• Weight measurement levels (load cells)

Capacitive level indicators are suitable for measuring liquids even at high pressures and temperatures, and, granulated or powdery solids, that have a high and constant relative permittivity with respect to vacuum and typically air.
These
 capacitive level transmitters allow continuous indication and level conditions; they are ideal for conductive and non-conductive liquids and offer good accuracy and stability against mechanical and chemical aggression.

Ultrasound level transmitters are based on the variation of the transit (or distance or flight) time of a sound or an ultrasound caused by the raising and/or lowering of the level in the tank to be measured. The sound or ultrasound is emitted by a transmitter placed at the top of the tank and is reflected by the level of the liquid or solid product in the tank in a return echo identified by a receiver coupled with the transmitter.
Sonic level transmitters are gauges suitable for continuous indication and level conditions, ideal for liquids and powdery solids.
Ultrasound level transmitters, offer good accuracy and measurement is independent of the physical characteristics of the product : (mass density, viscosity, etc.) and by the electrical characteristics of the product; (conductivity, permittivity, etc.)

Radar is defined as an electronic system capable of locating objects that are invisible to the naked eye and to determine distance, speed, shape and dimensions, using the propagation property of radio waves.
Radar level transmitters allow non-contact measuring of liquids or solids; they are ideal for difficult measuring of pressure and temperature - measurement is independent of the physical characteristics of the product, also offering high accuracy and repeatability.

 A Communicating vessels level gauge (visual) is a
 local level indicator made up of a column of liquid outside of the container to be measured; it is suitable for high pressures and temperatures, allowing local indication of the level.
Similarly, Communicating vessels level indicators, but magnetic, have advantages that make their use preferable in the following applications of fluids: high pressure, high temperature, inflammable or explosive, chemically aggressive, polluting to the environment, noxious or toxic to human beings.
Magnetic level indicators have the advantage of a local and remote indication.
With respect to the previous
 visual level indicators, instead of the measurement being read by the observer in correspondence to the liquid/gas separation surfaces, it is displayed directly by the magnetic measuring device.

Probe level measurement is automatic measuring system that periodically and/or continuously measures the level of liquids, solids, mixtures, powders, etc., in tanks, silos and containers in general.
They are called
 probe level indicators as they automatically “feel” the lowering of the material content from the top of the container and so note the height of the container, thus determining the content level.
The probe is activated by a float suspended on a cable or metal tape, by a servomotor that “senses” the floating of the float and transduces the lowering of the cable and/or tape in proportion to the raising of the level, in a series of impulses directly displayed and/or transmitted remotely.
Probe level indicators offer a local and remote indication, are suitable for medium and high pressures, ideal for great heights (also over 20 m), high accuracy (typically 1 mm).

Vibrating level indicators are suitable for indicating level conditions in liquids, powdery solids and solids in liquids.
They are composed of a probe that, when it vibrates at its natural frequency in the air, varies the vibration frequency in the presence of a liquid or solid to measure.
Vibrating level indicators can be installed vertically or laterally on the tank to be measured and do not require calibration.

The range of level gauges includes the
 rotary level indicators ideal for measuring level conditions of solids.
They are composed of a probe that is rotated by a small electric motor. The measuring probe, increasing the level, encounters greater resistance to its rotation and therefore the increase in the rotation torque is measured by an electromechanical or electronic device that indicates the level condition.
Rotary level indicators do not require calibration and offer good repeatability.

Magnetic float level switches  are ideal for checking the level of the liquid in tanks, baths, boilers and the control of pumps, valves, alarm systems.
Installation is either vertical directly into the process or laterally inserted in a housing outside the process.
 A vertical tube that is closed at its lower end and integral with the fastening system, internally it has one or more magnetic contacts (up to six switching points) (Reed switch). One or more floats (free to slide along the guide tube) operate magnetically on the contacts switching their state depending on the level of the liquid in the tank.
 
The switching points are preset on construction as required but they can be adjusted in the field.
The
 magnetic and floating level switches can be fitted with a potentiometer transmitter for continuous level reading.

 

</span></div>]" class="text_product"> Level measuring instruments

 

 Iva Vietnam Co.,ltd is the leading supplier of level measuring instruments. We supply the best solutions for the level of liquids, solids,.. 

 
// Fix for image handling
 
  Van ngắt khẩn cấp, van đóng khẩn cấp chống cháy ngược - Emergency shut-off valve
 

 Van ngắt khẩn cấp, van đóng khẩn cấp, van đóng nhanh chống cháy ngược (emergency shut-off valve) là loại

 
// Fix for image handling
 
 
- Coupling is supplied with an EPDM gasket and two pairs of bolts and nuts.
- Bolts are heat treated and conform to the requirements of ASTM A183 and Nuts to ASTM A194.
- Available in sizes 1” through 24” diameters.
 - Couplings are painted orange or red, or as an option can be supplied hot dipped zinc galvanization & coated with rust inhibiting paint. Other coatings by special request are available
- Flexible and rigid Joint reliability Isolates noise and vibration Convenient joint
 - Products are listed, approved and or certified by UL and FM or non-standard. 
</span></div>]" class="text_product"> Grooved products, Grooved fittings, couplings

 

 - Grooved products offer a complete and dependable way of executing all the mechanical engineering installations in a building structure. 

 - This applies not only to fire protection systems,

 
Trang (8/26): 5  6  7  8  9  10  11 ... « Trang đầu  |  Trang cuối » 
Hỗ trợ KH
Hotline: 0989.886.889
Bán hàng Online (Mr Tuân)
Bán hàng Online (Ms Xuân)
Bán hàng Online (Mr Tú)
Bán hàng Online (Ms Thủy)
Bán hàng Online (Mr Huy)
Chăm sóc khách hàng (After Sales)
Admin: tu.hm@vietnam-pump.com
 
 
Tin tức
 
Tiện ích
 
   Giá vàng
   Thời tiết
   Tỷ giá ngoại tệ
   Chứng khoán
 
Partner

Trang chủ | Liên hệ | Đầu trang
 

CÔNG TY TNHH QUỐC TẾ VŨ ANH VIỆT NAM
IVA VINA  CO.,LTD.

(Tên cũ : IVA VIETNAM CO.,LTD)
Trụ sở: Số 31 Ngõ 2, Xóm Đoàn Kết, Thôn Văn điển, Xã Tứ Hiệp, Huyện Thanh Trì, TP. Hà Nội, VN.
VP Đại diện: Số 47 Đường Ngọc Hồi , Phường Hoàng Liệt, Quận Hoàng Mai, Hà Nội, Vietnam
Điện thoại: 024-6288.3882; 6288.3289    Fax: 024-6288.3286    Hotline: 0989.886.889
Website: www.buy-asthma-inhalers-online.com . Copyright © 2005-2010 iva-vietnam. All Rights Reserved – Contact us
*Iva Vietnam, Vietnam pump, Vina pumps* Công ty TNHH Tập đoàn Quốc tế Vũ Anh giữ bản quyền nội dung trên website này.